Paley-Wiener-type theorem for nilpotent Lie groups
نویسندگان
چکیده
منابع مشابه
A Paley-Wiener Like Theorem for Nilpotent Lie Groups
A version of Paley-Wiener like theorem for connected, simply connected nilpotent Lie groups is proven.
متن کاملTrace Paley - Wiener Theorem
w Statement of the theorem 1.1. Let G be a reductive p-adic group. A smooth representation (~', E) of the group G on a complex vector space E is called a G-module. Usually we shorten the notation and write w or E. Let d~(G) be the category of G-modules, Irr G the set of equivalence classes of irreducible G-modules, and R (G) the Grothendieck group of G-modules of fnite length; R(G) is a free ab...
متن کاملA Theorem of Paley-wiener Type for Schrödinger Evolutions
We prove unique continuation principles for solutions of evolution Schrödinger equations with time dependent potentials. These correspond to uncertainly principles of Paley-Wiener type for the Fourier transform. Our results extends to a large class of semi-linear Schrödinger equation. Titre : Un théoreme de type Paley-Wiener pour les évolutions de Schrodinger. Résumé : On prouve des principes d...
متن کاملPaley-wiener-type Theorems
The Fourier transforms of functions with compact and convex supports in R are described. The Fourier transforms of functions with nonconvex and unbounded supports are also considered.
متن کامل1 BEURLING’S THEOREM AND L p − L q MORGAN’S THEOREM FOR STEP TWO NILPOTENT LIE GROUPS
We prove Beurling's theorem and L p − L q Morgan's theorem for step two nilpotent Lie groups. These two theorems together imply a group of uncertainty theorems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ukrainian Mathematical Journal
سال: 1998
ISSN: 0041-5995,1573-9376
DOI: 10.1007/bf02524486